OSNOVE PLANIRANJA ZAŠTITE I SPAŠAVANJA STANOVNIKA I DOBARA U SLUČAJU NESREĆA U NUKLEARNIM ELEKTRANAMA

SAŽETAK: U članku je riječ o osnovama planiranja zaštite i spašavanja u slučaju nesreća u nuklearnim elektranama. U našem susjedstvu (Krško u Sloveniji i Paks u Mađarskoj) kod kojih bi stvarno moglo biti nužno i na području Hrvatske primijeniti određene mjere masovne zaštite pučanstva. Poznato je kakva je, zbog neorganiziranosti zaštitu od te vrste ugrožavanja, bezrazložna uobčina (dakako i štetne materijalne posljedice) u Hrvatskoj uslijedila za vrijeme nesreće u tisuću kilometara udaljenoj nuklearnoj elektrani u Černobilju u Ukrajini. Zbog toga što je N.E. Krško relativno blizu Zagreba, a zbog neriješenih odnosa Hrvatske i Slovenije koji mogu biti suvremeno utjecati na sigurnost nuklearnih elektrana na tom području, naći se u slučaju nesreća u tom elektrani i (ili) je privremeno stavljeni izvan pogona.

Ključne riječi: zaštita i spašavanje stanovništva, nesreće, nuklearne elektrane

UVOD

U uporabi nuklearne energije posebna pozornost se mora poklanjati sigurnosti jer nesreća u nuklearnoj elektrani u kojoj se mogu osloboditi velike količine radioaktivnih tvari može nanijeti iznimno teške posljedice, kako materijalne, tako i one koje mogu ugrožiti život i zdravlje ljudi. Cilj svih aktivnosti u području sigurnosti nuklearnih elektrana je:

1. smanjiti vjerojatnost nastajanja nesreća na minimum
2. što moguće više smanjiti ispuštanje radioaktivnih tvari u okoliš ako se dogodi nesreća
3. mjerama zaštite i spašavanja dovesti na računalni minimum ozračenje i kontaminaciju ljudi i dobara ako se oslobode radioaktivne tvari u okoliš.

Aktivnosti 1. i 2. skupine su one vezane uz projekt - konstrukciju, kao i one vezane uz organizaciju i ljude, izbor mjesta izgradnje, izgradnju te pogon i održavanje nuklearne elektrane. Brojni su sustavi za pouzdan rad nuklearne elektrane i barijere širenju radioaktivnosti ako zbog bilo kojeg razloga dođe do nenormalnog rada nuklearne elektrane. Sam projekt - konstrukcija i izgradnja elektrane, uzeli su u obzir nastajanje tzv. projektiranih nezgoda kada se odstupi od normalnog rada elektrane. Posljedice tzv. projektiranih nezgoda u okolišu su zanemarive. Takve projektirane nezgode obično su razvrstane u nekoliko kategorija i opisane u završnom sigurnosnom izvještu elektrane (FSAR - Final Safety Analysis Report).
Pogon i održavanje elektrane je najvažnija karika u sprečavanju zakazivanja njezinih sigurnosnih sustava. Za provjeru sigurnog rada elektrane, uz brigu njezinog operatera - vlasnika i odgovarajućeg kontrolnog tijela državne uprave zemlje vlasnika, uobičajena je povremena međunarodna kontrola sigurnosti njezina rada. Tu kontrolu (tzv. OSART) provode neovisni eksperti za različita područja bitna za sigurnost nuklearne elektrane, a izvještaj podnose vlastima države koja može biti njezinim radom ugrožena. Ta kontrola obuhvaća: rukovođenje, organizaciju i upravljanje elektronom; sposobljivost i kvalificiranost kadra; proizvodnju; održavanje; tehničku potporu i poboljšanja na osnovi proizvodnog iskustva; radiološku zaštitu; kemijsku u elektrani te planiranje i pripravnost za slučaj nesreće. Analiza sigurnosti je kontinuiran proces i obveza državne uprave u zemljama korisnicama nuklearne energije.

Unatoč činjenici kvalitetnog projekta - konstrukcije i izgradnje elektrane zbog pogrešaka u njezinom pogonu i održavanju, ali i mogućih pogrešaka u projektu - konstrukciji i izgradnji koje nisu bile uspostavljene prilikom puštanja elektrane u pogon, može zakazati njezin rad i mogu se osloboditi opasne radioaktivne tvori u okolinu. Radi se o tzv. neprojektiranim nesrećama i operateri - vlasnici nuklearnih elektrana vrlo nerado govore o njima. To što oni o tome ne žele govoriti, ne znači da se ne treba pripremiti za slučaj takvih nesreća. Uobičajeno je u svijetu da elektrana ne može dobiti dozvolu za rad, dakle ne može krenuti u proizvodnju električne energije, ako ne postoje zadovoljavajući planovi pripravnosti i djelovanja za spašavanje stanovnika, dobara i okoliša za slučaj takvih haviara.

Za treću skupinu aktivnosti, važnih za sigurnost, potreban je visok stupanj organiziranosti i pripremljenosti kako bi se brzo i učinkovito djelovalo. Sve aktivnosti na provedbi zaštite moraju biti pažljivo planirane. Neopremljenost, neorganiziranost i nizak stupanj informiranosti pučanstva o radioaktivnom zračenju i nuklearnoj energiji može izazvati neželjene posljedice kao što su se u nas 1986. godine dogodilo za vrijeme nesreće u udaljenoj elektrani u Černobilju. Zastrašenost stanovnika radioaktivnim zračenjem i nuklearnom energijom uz nedovoljnu organiziranost službi, koje bi trebale biti odgovorne za zaštitu i spašavanje, može rezultirati prekomjernim štetama ako se dogodi nesreća na nekoj od elektrana u našem susjedstvu (Krško u Sloveniji i Paks u Mađarskoj).

NESREĆE, AKCIJE ZAŠTITE I INTERVENCIJSKE DOZE

Prilikom fisije 235U koji se koristi kao gorivo u termalnim reaktorima (reaktori u kojima dolazi do fisije Urana - 235 usporenim ili tzv. termalnim neutronima) nastaje niz radionuklida srednje teških elemenata najrazičitijih vremena poluraspada. Osim njih stvara se niz radionuklida koji su rezultat aktivacije neutronima stabilnih ili nestabilnih atomskih jezgri (produkata fisije). Ukupne aktivnosti radionuklida u jezgri reaktora snage 1.000 MW(e) doseže (kod PWR tipa reaktora - lakovodni reaktor s vodom pod pritiskom) učeci izmjene goriva 3×E20 Bq (E20 je deset na dvadesetu potenciju - broj s dvadeset nistača nakon jedinice).

Uobičajeno je da se govori o tri stanja rada elektrane: 1. normalnom radu, 2. projektiranim nezgodama (vjerojatnim) i 3. teškim nesrećama (malo vjerojatnim, ali ipak mogućim). Rizik rada nuklearne elektrane može se iskazati očekivanim ispuštanjem radionuklida u okoliš koje je umnožak aktivnosti ispuštene iz elektrane i vjerojatnosti da to ispuštanje nastane. Očekivano ispuštanje radionuklida može se iskazati smjesom radionuklida svedenom na djelovanje ekvivalentno 1311 (Jod-131), koje za tri stanja elektrane (prema američkim analizama) iznosi u E10 Bq/reaktor godini: normalni rad - 6,3; projektirane nezgode - 0,4 do 1,1 i teške nesreće - 2000. Očito je ono najveće za teške nesreće, iako je vjerojatnost njihova nastupanja veoma mala. Stoga se za takve nesreće treba pripremiti zaštitu i spašavanje stanovnika. Vidljivo je da su normalni rad i tzv. projektirane nesreće sasvim perifernih značaja po poslijedicama u okolišu.

Po veličini ispuštanja radionuklida u okoliš, teške nesreće su (prema američkoj praksi) podijeljene u pet kategorija (Tablica 1.). Najteža je prva kategorija u kojoj nastaje trenutno razaranje reaktorske zgrade. Za usporedbu su u Tablici 1 prikazana i oslobađanja radionuklida u nesreći u Černobilju (zanimaljivo je da se za vrijeme nesreće u Černobilju tvrdilo da ta elektrana nema zaštitne zgrade - konteinmenta).
Tablica 1. Kategorije ispuštanja radionuklida u teškim nesrećama

<table>
<thead>
<tr>
<th>Kategorije ispuštanja</th>
<th>SST1</th>
<th>SST2</th>
<th>SST3</th>
<th>SST4</th>
<th>SST5</th>
<th>Černobijl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip nesreće</td>
<td>taljenje jezgre</td>
<td>taljenje jezgre</td>
<td>taljenje jezgre</td>
<td>ispuštanje iz međuprostora gorivo - košulja</td>
<td>ispuštanje iz međuprostora gorivo - košulja</td>
<td>taljenje jezgre</td>
</tr>
<tr>
<td>Vrsta kvara kontejmenta</td>
<td>nadpritisak</td>
<td>eksplozija vodika ili gubitak izolacije</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nadpritisak eksplozija pare</td>
</tr>
<tr>
<td>Propuštanje kontejmenta</td>
<td>veliko</td>
<td>veliko</td>
<td>1%/dan</td>
<td>1%/dan</td>
<td>0,1%/dan</td>
<td>veliko</td>
</tr>
<tr>
<td>Tranje ispuštanja (h)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>9 dana</td>
</tr>
<tr>
<td>Ispušteni dio jezgre:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe-Kr skupina</td>
<td>1,0</td>
<td>0,9</td>
<td>6xE-3</td>
<td>3xE-6</td>
<td>3xE-7</td>
<td>1,0</td>
</tr>
<tr>
<td>I skupina</td>
<td>0,45</td>
<td>3xE-3</td>
<td>2xE-4</td>
<td>1xE-7</td>
<td>1xE-8</td>
<td>0,2</td>
</tr>
<tr>
<td>Cs-Rb skupina</td>
<td>0,67</td>
<td>9xE-3</td>
<td>1xE-5</td>
<td>6xE-6</td>
<td>6xE-8</td>
<td>0,10-0,13</td>
</tr>
<tr>
<td>Te-Sb skupina</td>
<td>0,64</td>
<td>3xE-2</td>
<td>2xE-5</td>
<td>1xE-9</td>
<td>1xE-10</td>
<td>0,15</td>
</tr>
<tr>
<td>Ba-Sr skupina</td>
<td>0,07</td>
<td>1xE-3</td>
<td>1xE-6</td>
<td>1xE-11</td>
<td>1xE-12</td>
<td>0,04-0,056</td>
</tr>
<tr>
<td>Ru skupina</td>
<td>0,05</td>
<td>2xE-3</td>
<td>2xE-6</td>
<td>0</td>
<td>0</td>
<td>0,023-0,029</td>
</tr>
<tr>
<td>La skupina</td>
<td>3xE-3</td>
<td>3xE-4</td>
<td>1xE-6</td>
<td>0</td>
<td>0</td>
<td>0,023-0,032</td>
</tr>
</tbody>
</table>

Napomena: Navedene kategorije ispuštanja služe za procjenu posljedica nesreća u okolišu i s tog stajališta za vrednovanje kvalitete mjesta za izgradnju nuklearnih elektrana. Radi uspoređbe u tablici su dati podaci i za nesreće u Černobilju. Što se tiče apsolutnih iznosa radionuklida u jezgri FWR reaktora (1.120 MWe) prije izmjene goriva i Černobiljskog RBMK-1000 reaktora oni se ponešto razlikuju. U načelu su manji u RBMK-1000 zbog drugih načina izmjene goriva i nekih drugih činitelja.

Najteže nesreća kod koje u okolišu završi velik udio svakog od 54 najzastupljenija radionuklida reaktorske jezgre (svrstana u sedam skupina) može usmrtiti nekoliko stotina, pa i nekoliko tisuća ljudi (slika 1), a područje oko elektrane može biti trajno izgubljeno za korištenje. U reaktorskoj jezgi nastaje više od 500 različitih radionuklida, različitih poluvremena raspada, od kojih su izabrana 54 najznačajnija.

Na slici 1 na ordinati je naznačena vjerojatnost da će u slučaju najteže nesreće poginuti broj ljudi naznačen na apscisi. Rezultati nisu učinci stvarnih podataka reaktor-lokacija (elektrane u SAD-u) nego je pretpostavljeno: da se na svakoj lokaciji nalazi reaktor snage 1.120 MWe, da je prosječno dobro izvedena evakuacija. Korištena je reprezentativna meteorologija, stvarna naseljenost ukolo elektrane i stvarna ruža vjetrova. Noviji rezultati istraživanja upućuju da je kategorija ispuštanja radionuklida u slučaju nesreće SST1 možda prevelika.

Što je pojedina krivulja niža, to je lokacija sa stajališta posljedica povoljnija. Posljedice su veće kod elektrana u gušće naseljenim područjima (Limerick i Indian Point) nego u onima slabije naseljenim.

Radioaktivni oblok koji se oslobađa prilikom teške nesreće u nuklearnom elektranu na nekoliko načina može ozračiti ljudima (slika 2). To su: vanjsko ozračenje zbog potopljenosti u oblak, vanjsko ozračenje zbog istaloženosti radioaktivnih čestica na tlo, unutrašnje ozračenje zbog udiranja radioaktivnih tvari, unutrašnje ozračenje zbog unosa u organizm kontaminirane hrane (voće, povrće, hrana životinjanskog podrijetla) i vode. Utjecaj izravnog zračenja razvaline reaktora zbog apsorpcije zračenja u zraku je zanemariv na udaljenostima većim od nekoliko stotina metara. Isto tako, zanemarivi su i usporedbi s putovima ozračenja radioaktivnim oblakom, i malo vjerojatni putovi ozračenja zbog ispuštanja radioaktivnih tvari u vodotoke, ali trebaju biti razmatrani.
Slika 1. Vjerojatnost pogibije stanovnika u slučaju nesreće s ispuštanjem radionuklida kategorije SST1 za neke američke nuklearne elektrane

Slika 2. Putovi ozračenja ljudi u slučaju nesreće i normalnog rada nuklearne elektrane
Zbog specifične aktivnosti u radioaktivnom oblaku - koji nastaje kao rezultat ispuštanja radionuklida u okoliš, a zbog disperzije pada s udaljenosti od nukleame elektrane - mjere zaštite planiraju se do ograničenih udaljenosti (slika 3).

Mjerama zaštite i spašavanja posljedice se mogu smanjiti, no i mjere zaštite i spašavanja imaju svoju cijenu. Kod poduzimanja akcija zaštite mora se voditi računa o tome da zaštita bude optimalna, odnosno da šteta izazvana nesrećom i troškovima mjera

Primjerice mjere zaštite (evakuacija i ostajanje u zatvorenim prostorima) u nekim zemljama planiraju se do sljedećih udaljenosti od elektrane: Finska 20 km, Francuska 5 km, Japan 10 km, Njemačka 10 km, SAD 16 km, Španjolska 10 km, Švedska 15 km, Švicarska 20 km, Velika Britanija 3 km. Mjere zaštite od kontaminirane hrane i vode planiraju se do udaljenosti u Finskoj 100 km i u SAD-u 80 km od nukleame elektrane. Jasnno je da se u slučaju nesreće, osim ovih planiranja u prostoru, mora uzeti u obzir stvarno stanje ozračenosti u okolišu utvrđeno mjenjima. Obično se planovi zaštite izradjuju za nešto blaže kategorije ispuštanja od najteže i zbog toga su i razlike u udaljenostima od elektrane koje koriste pojedine zemlje u ovisnosti s koliko ozbiljnom nesrećom računaju u pojedinoj zemlji i o snazi elektrane. Ako računaju s najtežom nesrećom, udaljenosti su veće.

Svakako nesreća, ne samo nesreća s oslobađanjem radioaktivnih tvari, rezultira određenim posljedicama. zaštite bude minimalna. Budući da taj minimum nije uvijek jednostavno odrediti, međunarodne organizacije (IAEA - Međunarodna agencija za atomsku energiju, WHO - Svjetska zdravstvena organizacija, ICRP - Međunarodna komisija za radiološku zaštitu) publicirale su preporuke kod kojih, u nesreći, očekivanih ekvivalentnih doza treba poduzimati akcije zaštite i spašavanja stanovnika. Ako je očekivana ekvivalentna doza za trajanje povećane radioaktivnosti veća od praga D2 (vidi sliku 4), zaštite mjere moraju se poduzimati jer će šteta biti manja. Iznosi li očekivana ekvivalentna doza između D1 i D2, akcije zaštite se mogu, ali se ne moraju poduzimati ovisno o procjeni lje of odjednostrane minimuma. Ako je očekivana ekvivalentna doza manja od D1, ne provodi se zaštita jer nanosi veliku štetu nego korist (na primjer bacanje nisko kontaminirane hrane bogate vitaminima, zadržavanje malo djece u zatvorenim prostorijama itd.).
Pet je osnovnih akcija zaštite. To su: 1. ostajanje u zatvorenim prostorijama (za prolaska radioaktivnog oblaka), 2. upotreba jodnih spojeva (da bi se njime zaštitila štitnjača i spriječilo ozračenje štitnjače), 3. evakucija, 4. kontrola prehrambenih proizvoda i vode i ograničenje njihove uporabe te 5. relokacija (preseljenje stanovnika nakon prolaska oblaka s kontaminiranog područja). Prve tri akcije valja poduzeti što brže nakon nesreće. U Tablici 2. dane su doze D1 i D2 kod kojih se poduzimaju akcije zaštite.

Tablica 2. Doze kod kojih se poduzimaju akcije zaštite

<table>
<thead>
<tr>
<th>Mjere zaštite</th>
<th>Doza (mSv ili mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cielo tijelo</td>
</tr>
<tr>
<td>Ostajanje u zatvorenim prostorijama</td>
<td>5 - 50</td>
</tr>
<tr>
<td>Uporaba jodnih spojeva</td>
<td>-</td>
</tr>
<tr>
<td>Evakucija</td>
<td>50 - 500</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekvivalentna doza u prvoj godini poslije nesreće (mSv)</td>
<td></td>
</tr>
<tr>
<td>cielo tijelo</td>
<td></td>
</tr>
<tr>
<td>Kontrola prehrambenih proizvoda i vode</td>
<td>5 - 50</td>
</tr>
<tr>
<td>Relokacija</td>
<td>50 - 500</td>
</tr>
</tbody>
</table>
Osim osnovnih intervencijskih razina (Tablica 2.), postoje izvedene intervencijske razine (DIL (i,p) nuklida "i" puta ozračenja "p"). S njima se - u nedostatku valjanih, a vrlo složenih računalnih modela za proračun ekvivalentne doze svih putova ozračenja (koji su uz to bez potpunog poznavanja njihovih svojstava i ograničenja nepouzdanosti za nedovoljno upućenog korisnika) - vrlo brzo mogu uspoređiti mjere ekspozicijske doze ili specifične aktivnosti (\(L_{(i,p)}\) nuklida "i" puta "p") te, ako je potrebno, poduzimati mjere zaštite. Izvedene intervencijske razine (DIL (i,p) izračunane su tako da je zadana ekvivalentna doza (osnovna intervencijska razine) kojom je ozračen čovjek jednim od putova ozračenja s jednim izotopom tako da je modeliran složeni put ozračenja (na primjer kod unosa kontaminirane hrane u organizam važni su sljedeći činilici: varijacija koncentracije nuklida u hrani s vremenom, metabolizam unesena nuklida, dozimetrijski model za ugrađene nuklide u tkivo, priprema i prerada hrane). Brojčane vrijednosti izvedene intervencijske razine (DIL) za različite nuklide i putove ozračenja prikazane su u priručnicima. Prije poduzimanja zaštite određuju se omjeri izmjerenih ekspozicijskih doza ili specifičnih aktivnosti (\(L_{(i,p)}\)) i izvedenih intervencijskih razina (DIL (i,p)): \(L_{(i,p)}/DIL_{(i,p)}\), pa se zbroje po svim putovima ozračenja (slika 2) i nuklida. Ako je nihov zbroj veći od jedan, poduzimaju se akcije zaštite tako da se djeluje određenom akcijom zaštite (Tablica 2.) na put - izotop koji je zbroju daje najveći doprinos (najveći razlomak).

Na primjer, izvedene intervencijske razine (DIL) za radionuklide u mljeku su za 131I - 2x3E3 Bq/l, za 137Cs - 2x4E4 Bq/l, a mesu za 131I - 4 Bq/kg, za 137Cs - 4 Bq/kg. Kada se mjerenjem odrede specifične aktivnosti ili ekspozicijske doze \(L_{(i,p)}\), izvodi se zbroj po svim putovima ozračenja i izotopima:

\[
\begin{align*}
L_{(131I,mljeko)} & \times 2E3 \\
L_{(137Cs,mljeko)} & \times 2E4 \\
L_{(131I,meso)} & \times E4 \\
L_{(137Cs,meso)} & \times E4 \\
\end{align*}
\]

ostali putovi ozračenja i izotopi

Ako su izmjere vrijednosti \(L_{(i,p)}\) bliske DIL (i,p) (nazivnici razlomaka zbroja), jasno je da zbroj premašuje jedan i zaštita je nužna.

Problemii i nesporazumi u uvodenju određenih mjera zaštite proizlaze su iz upotrebe normi koje služe za postavljanje ograničenja za normalan rad nuklearnih objekata i za rad s radionuklidima, a koji nisu primjenjeni za slučaj nesreće jer im to nije niti svrha. Za slučaj nesreće ništa ne znače tzv. maksimalno dopustive specifične aktivnosti u pojedinim medicinskim sredstvima (zrak, voda, hrana) jer su neupotrebljive u slučaju nesreće, a i samo izvođenje određenih iznosa (standarda zaštite) zasniva se na sasvim drugim načelima nego što su primjenjeni za nesreće.

POSLJEDICE NESREĆE U ČERNOBILJU

Neposredno kad se dogodila nesreća u Černobilu znalo se da nema potrebe za zaštitu stanovnika na znatnim udaljenostima od elektrane. Naime, pod pretpostavkom da se dogodila najčešća nesreća sa najvećim ispuštanjem (SST-1) izvedeni su proračuni vjerojatnosti da će biti premašena doza (50 mSv - za cijelo tijelo) kod koje se mora zaštititi stanovnike na različitim udaljenostima od elektrane. Uočljivo je (slika 5) da je na udaljenosti 400 km - udaljenost granica bivšeg SSSR-a sa susjednim zemljama - vjerojatnost premašivanja doze (D2 = 50 mSv za cijelo tijelo) kod koje treba štimiti stanovnike značajna (manja od 0,001 ili 0,1%). Čak i na manjenj udaljenostima, na primjer za Kijevo (oko 130 km udaljen od Černobilja) ta vjerojatnost je manja od 1%. Tu činjenica treba uzeti u obzir za tumačenje slika (na TV) iz Kijeve u kojem je život u vrijeme černobilske nesreće tekao normalno, dok su naši gradovi, iako znatno udaljen od mjesta nesreće, zahtijevajući "preporukama za zaštitu stanovnika" (koje su davale osobe koje ne poznaju metodologiju zaštite u slučaju katastrofa u nuklearnim elektrandoma) bili pusti. Kasnije analize ekvivalentnih doza stanovnica Kijeva pokazale su da su one bile manje od D2 = 50 mSv i bile su bliske donjoj intervencijskoj razini (vrlo strogoj) od D1 = 5 mSv.
Na osnovi mjerenja ekspozicijskih doza i specifičnih aktivnosti nukliđa u različitim medijima (zrak, voda, hrana) diljem Europe dobivene su ekvivalentne dože koje su bile manje od donjih vrijednosti inter

Vjerovalnich; doza i dijelovih stališta

Slika 5. Vjerovanost premaženja inter

dijelova na uvoz hrane bila su u suprotnom smjeru (iz bivše Jugoslavije). U nizu zemalja savjetovano je stanovnicima da primijene određene mjere zaštite iako subjektivni potreba za to nije bilo. Štete izazvane tim "mjerama zaštite" u pojedinim zemljama, u prvom redu, ovisile su o vreme proteklom do osvješćivanja i subjektivne

većnosti javnosti. Ostaje otvoreno pitanje zbog čega su se izvan bivšeg SSSR-a preporučivale štetne mjere zaštite kod tako malih doza. Odgovor je možda u činjenici, da je struka (u ovom slučaju radiološka zaštita) još jednom prepustila mjesto politici i to ne samo u nas. Hrvatska je od toga imala štete. Prema podacima mjerodavnog tijela državne uprave za procjenu šteta, štete u Hrvatskoj izazvane nesrećom u Černobilju iznosile su 5,6 milijuna USD, a tome su pridonijele u biti nepotrebnje akcije zaštite. Ipak, u usporedbi sa štetama od elementarnih nepogoda od 1981. do 1992. godine koje iznose oko 300 milijuna USD godišnje, ili 800 tisuća USD na dan, od čega se na suše odnosi najveći dio - čak 24 posto, to ipak nije mnogo.

Loše je to što se u nas od te nesreće ništa nije naučilo. Iako Hrvatska na svojem teritoriju nema nuklearne elektrane, ima ih kod naših susjeda: Slovenija 16 km od granice i Mađarska (4 reaktora) oko 70 km od naše granice. One postiju sasvim dobre rezultate u proizvodnji električne energije, no bilo bi zanimljivo znati koliko su one sigurne te svakako izraditi plan pripravnosti i djelovanja za zaštitu na području Hrvatske, ako se u njima dogodi nesreća (oslobađanje radioaktivnih materijala), jer bi posljedice u Hrvatskoj zbog njihove blizine mogle biti znatne (panika, kontaminacija stanovnika i dobara). To se osobito odnosi na Nuklearnu elektranu Krško, kod koje zbog nesuglasica Hrvatske i Slovenije oko vlasništva i upravljanja elektronom sigurnost može biti ozbiljno dovedena u pitanje.

Dugoročne radiološke posljedice nesreće u Černobilju sažeto jesu:

1. Površina područja u okolini elektrane koja je kontaminirana Cezijjem-137 specifične aktivnosti veće od 185 kBq/m² (ta specifična aktivnost je ona koja izaziva evkvalentnu dozu 5 mSv za trajanja života, što je prema standardima radiološke zaštite dopustivo za trajanja života, dok je godišnje dopustivo 1 mSv) na osnovi mjerenja procjenjuje se na 16.500 km² u Bjelorusiji, 8.100 km² u Ukrajini i 4.600 km² u Rusiji. Ostali radionuklidi za dugotrajno ozračenje su zanemariv bilo zbog kratkog vremena poluraspadu, bilo zbog male specifične aktivnosti ili učinak u okolišu u odnosu na CS-137. Elektrana je u Ukrajini, u blizini granice s Bjelorusijom (i Rusijom), ali je područje Bjelorusije zbog smjera vjetra za vrijeme oslobađanja radioaktivnih tvari u većem opsegu kontaminirano (u slučaju nesreće u NE Krško moglo bi se također dogoditi slično, tj. da područje Hrvatske bude jače kontaminirano od područja Slovenije na kojem je elektrana).

2. Ukupna evkvalentna doza za stanovništvo koje živi na kontaminiranom području aktivnosti u rasponu 185-555 kBq/m² je od 5 do 20 mSv za razdoblje od 1986. do 2056. godine.

3. Za stanovništvo koje živi na još jače kontaminiranom području 555 -1.480 kBq/m² ta doza za isto razdoblje iznosi od 20 do 50 mSv, a najvećim dijelom je od vanjskog ozračenja.

4. Na područjima gdje je osobito visok prijenos nuklida iz tla u poljoprivredne proizvode, koji se koriste za prehranu, doza zbog samog unutrašnjeg zračenja može premašiti 50 mSv za razdoblje od 70 godina.

5. Za cjelokupno stanovništvo (7,1 milijun ljudi) na kontaminiranom području i zoni strogog kontroliранa pristupa smrtni slučajevi zbog pojave raka izavananog nesrećom u Černobilju procjenjuju se na oko 6.600 u razdoblju od 85 godina poslije nesreće. U tom razdoblju zbog pojave raka koji nije posljedica Černobilja umrijet će 870 tisuća ljudi.

U svijetu postoje područja povišene radioaktivnosti i evkvalentne doze iznose znatno više od svjetskog prosjeka (2 mSv na godinu), a znatno su više od onih u kontaminiranim područjima u okolini Černobilja. Te doze iznose u graničnim područjima Sri Lanke od 30 do 70 mSv/god., u području Minas Gerais u Brazilu 17 - 120 mSv/god., u Kerali (Indija) 8 - 80 mSv/god., na plažama Rio de Janeiro (Brazil) 5,5 - 12,5 mSv/god.

Neki stručnjaci postavljaju pitanja zašto ljudi nisu evakuirani iz tih područja ili na primjer i iz Norveške gdje je na nekim područjima evkvalentna doza za trajanja života izazvana radionuklidima u okolini 365 mSv, ili iz nekih područja u Indiji gdje je veća od 2.000 mSv ili u Iranu gdje prelazi i 3.000 mSv, a u gradu Ramsaru (Iran) prelazi 17.000 mSv za trajanja života, a nema tragova pojavi bolesti izazvanih zračenjem.

Strah i njegove posljedice u kontaminiranim zonama oko Černobilja, prema nekim autorima, povezan je s političkom definicijom radiološkog rizika (ograničenje evkvalentne doze za trajanja života na 5 mSv) koja je konzervativna i ne pretakzuje stvarne (ustanovljive) zdravstvene učinke zračenja. Naime, granica dopustivog ozračenja stanovništva za prosječnog trajanja života iznosi 5 mSv (iako je godišnje dopušteno 1 mSv) te je vrlo niska. U nju ne ulazi zračenje iz prirode i zračenje zbog primjene u medicini. Zračenje iz prirode u svijetu je za trajanja života oko 140 mSv u prosjeku, a u medicini je 127
ZAKLJUČAK

Poznata su trajna sporenja Hrvatske i Slovenije oko Nuklearne elektrane Krško. Valjalo bi elektranu privremeno staviti izvan pogona do rješavanja vlasničkih odnosa, uspostave kompetentne međudržavne kontrole rada elektrane i uspostave odgovarajućih planova zaštite i spašavanja u slučaju havarije (za područje Hrvatske). Sasvim je neizvjesno, s obzirom na to da od početka pogona elektrane (1981. god.) do danas nije, hoće li u Hrvatskoj prije prestanka rada elektrane (2023. god.) biti izrađen plan zaštite i spašavanja za slučaj havarije ili će ona biti zaustavljena prije izrade. Elektrana ne bi mogla biti puštena u pogon bez takvog plana u zemljama zrelih za primjenu nuklearne elektrane.

O pitanju državne kontrole sigurnosti elektrane, premda stanovništvo i dobra u Hrvatskoj (u određenim uvjetima) mogu biti čak i više ugrožena u slučaju nesreće nego u Sloveniji, slovenska strana odlučuje sama i nema govora o tome da bi se provodila zajednički. Utipna je sigurnost elektrane u uvjetima neriješenog vlasništva, pritisaka i miješanja nekompetentnih osoba u rad elektrane, neriješenog financiranja sve bliže i, dakako, nužne zamjene dotrajalih parogeneratora (za sigurnost bitnih dijelova elektrane). Zamjena parogeneratora nije modernizacija, nego nužan preduvjet za poboljšanje narušene sigurnosti ili smanjenja snage zbog njihove pohabnosti (začepljenje oštećenih cijevi i smanjen prijenos topline).

HEP (Hrvatska elektroprivreda) i vlada RH trebaju se izboriti da Hrvatska ima ravnopravan utjecaj i potpunu informaciju o sigurnosti NE Krško (što sada nipošto nije slučaj), jer je uložila polovinu sredstava u izgradnju, kao i zato što snosi polovinu troškova pogona i održavanja (što treba, dakako, uredno plaćati). Treba ostvariti da se, makar u tom osjetljivom području, odluke u Hrvatskoj donose na osnovi struke i uvučavanja mišljenja stručnjaka. Tako bi, dakako, trebalo biti i u Sloveniji. U svakom poslu, pa tako i o NE Krško lako bi se dogovorili oni koji poznaju problematiku, nego oni koji ne znaju o čemu se dogovaraju (da je tako bilo od početka njezina rada, tj. da se dopustilo da o elektrani rasprijeđuju i odlučuju stručnjaci bez miješanja političara i nekih drugih osoba, ne bi bilo nisuglasica).
Dogovor o elektrani posebno je važan i zbog toga što je ona relativno blizu Zagreba, najvećeg popułacijeskog središta u njegovoj okolini (37 km od središta Zagreba), na koji u slučaju havarije može itekako utjecati.

Uobičajeno je postojanje zajedničkih državnih kontrola sigurnosti za elektrane, koje su blizu granica države čak i onda ako nisu u suvlasničkom odnosu. Vlada RH trebala bi što prije zajedno s vladom Slovenije, a možda i Austrije osnovati tim eksperata (školovanih ljudi za pojedine sigurnosne elemente nuklearne elektrane) za praćenje sigurnosti NE Krško. Zajednički poslovodni i drugi odbori u kojima nekompetentne osobe za ovu problematiku donose odluke nadglavavanjem nisu jamstvo sigurna rada elektrane, dopače, velika su opasnost. Također bi bilo dobro da se ima informacija o sigurnosti NE Paks u Mađarskoj (koja je udaljena od granice Hrvatske nego NE Krško), jer i nesreća u toj elektrani može zahtijevati mjere zaštite i spašavanja u Hrvatskoj.

Zna se kako trebaju izgledati planovi masovne zaštite i spašavanja stanovnika od različitih vrsta ugrožavanja, pa tako i u slučaju nesreće u nuklearnoj elektrani. Područja u kojima treba štititi pučanstvo u slučaju nesreće u nama bliskim nuklearnim elektranama Krško u Sloveniji i Paks u Mađarskoj zadiru i u Hrvatsku. Stoga u Hrvatskoj odgovorne institucije (treba ih tek uspostaviti) trebaju izađini odgovarajuće planove kako bi se u slučaju nesreće spriječila panika i prekomjerne štete koje bi zacijelo bile mnogo veće nego kada se 1986. godine bezrazložno uzbudila javnost i prouzročilo štete u Hrvatskoj prilikom nesreće u tisuću kilometara udaljenoj elektrani Čemobili u Ukrajinii.

Poznato je da se u Hrvatskoj zbog nedovoljne informiranosti o radioaktivnom zračenju i njegovim posljedicama manipulira javnostu tobožnim problemom skladištenja radioaktivnog otpada i nebitnim informacijama o radu NE Krško. Za ono što je bitno i što stvarno može ugrožiti stanovnike - a to je problem sigurnosti NE Krško u našoj blizini i uspostava odgovarajućih planova zaštite i spašavanja u slučaju nesreće - nema interesa, novca, niti institucija koje bi se time kvalificirano bavile.

LITERATURA

Derived Intervention Levels for application in Controlling Radiation Doses to public in the Event of Nuclear accident of Radiological emergency, Safety Series No. 81, IAEA, Vienna, 1986.

Molak, B.: Zaštita stanovnika i odlučivanje o tehnologijama (nesreće u nuklearnim elektranama i proizvodnja električne energije), Nuklearnja tehnologija (Vinča), 1988., 1, 26-32.

Molak, B.: Aktivnosti prije i poslije katastrofe izazvanih prirodnim nepogodama, djelovanjem čovjeka i ratnim sukobima, Hrvatske vode, 5, 1997., 19, 137-146.

Muckerheide, J.: Cs 137 in Soil and Cancer Risk, Jan 1997. (e-mail).

Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants, Safety Series No. 50-SG-06, IAEA, Vienna 1982.

Rozental, J.J.: Chernobyl, Jan 1997. (e-mail).

ESSENTIALS OF SAFETY AND PROTECTION OF PUBLIC AND GOODS IN CASE OF NUCLEAR POWER PLANT ACCIDENTS

SUMMARY: The article discusses the essentials of emergency planning of public protection in the case of nuclear power plant accident in our area (Krško in Slovenia and Paks in Hungary), with actual protective measures that may be needed for large scale public protection. The extent of unreasonable anxiety and poor organisation in Croatia and the material consequences of the Chernobyl accident in Ukraine are a well-known fact. The Krško nuclear power plant is a relatively short distance from Zagreb and, since the relations between Croatia and Slovenia are burdened with some unresolved difficulties that might have a negative effect on the safety of the nuclear power plant operation, it is imperative that an emergency plan for protection and rescue in case of accident be developed or temporary stop of the plant.

Key words: protection and rescue of public, accidents, nuclear power plants

Professional paper
Received: 1998-09-01
Accepted: 1998-12-23